

Bar supports

APPLICATIONS

TEKNOMEGA bar supports make it possible to support efficiently and conveniently all copper and/or aluminum bar systems to be made inside an electric cabinet.

The versatility and universality of our bar supports allows the panel board fitter to easily handle the few references to make a wide range of configurations in any type of panel board metalwork. *TEKNOMEGA* dedicated particular attention on the efficiency and safety of these products, carrying out *TYPE TESTS* on all the hereindicated references as per the requirements of the reference standards at acknowledged laboratories.

ADVANTAGES

Complete range to support side and level bars For copper and aluminum bars Can be used on the following thicknesses: 5 and 10 mm for side bar support from 4 to 14 mm for level bar support For systems up to 3,200 Amp

Maximum versatility of use and application Quick and simplified Universal fitting

Tested and certified in compliance with standards IEC 439-1

Ω TOP - Universal bar support

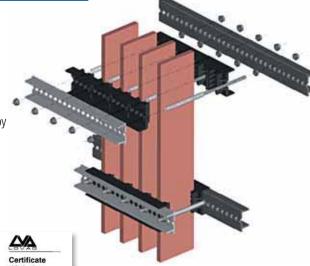
TECHNICAL FEATURES

Distance between adjustable phases Exceptional resistance to short-circuits High versatility Sets of blocks with screws Prepunched support channels in non-magnetic aluminum Ampacities from 400 to 3,200 Amp Rod thickness from 5 to 10 mm

Certifications:

 Ω TOP was tested in laboratory

as per standard IEC 439-1 Mechanical resistance tests on insulating block


CERTIFIED ACAE-LOVAG

Insulating blocks

Made in reinforced PA 30% Fiberglass Self-extinguishing UL 94V0 Color: black

Channel

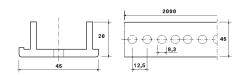
Non-magnetic in aluminum alloy EN AW-6060

Ω TOP - Universal bar support

The Ω TOP bar support is built using two references only:

- 1) aluminum support and fitting channel.
- 2) set of blocks/screws with all that is needed to make a bar support.

There are also some pre-assembled bar support for panel boards 400 and 600 mm depth, as well as accessories such as:


- rilsan tube advised for configurations with minimum spacing between phases
- brackets for horizontal omnibus and vertical busbar (to be used also to compensate the offset between different bar systems.)

SUPPORT CHANNEL

- one single code for all configurations
- made in aluminum, prepunched with 12.5 mm pitch
- length 2 meters

				The state of the s
Code	Reference		Weight Kg.	The state of
TOP1000	TOP PR 2000	2	1.306	. //

 used, double thanks to the asymmetric shape, it forms a high mechanical resistance structure (for high horizontal loads)

BLOCKS & SCREW SET


The set is made of insulating blocks for 5 to 10-mm thick bars and of all the screws and tie-rods needed to make a T- (3-pole) or T+N-configured (3-pole+neutral) bar support

Example: to make a bar support in 3-pole+Neutral(TN),

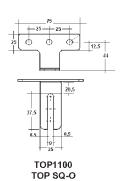
with 2 bars per phase, 10-mm (2/10) thick = 2/10 TN

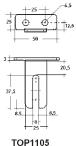
Select: Aluminum channel TOP1000 Set of blocs & screws TOP1040

Code	Reference		Туре	Total Nr. blocks	Nr. tie-rods	Nr. bars	Thk. mm	bar min-max H mm	L mm
TOP1005	TOP 2/5T	1	T	6	4	1÷2	5	30-125	50
T0P1010	TOP 2/5TN	1	T+N	8	5	1÷2	5	30-125	50
T0P1015	TOP 4/5T	1	T	6	4	1÷4	5	30-125	75
T0P1020	TOP 4/5TN	1	T+N	8	5	1÷4	5	30-125	75
T0P1025	TOP 1/10T	1	T	6	4	1	10	30-120	50
TOP1030	TOP 1/10TN	1	T+N	8	5	1	10	30-120	50
T0P1035	TOP 2/10T	1	T	6	4	1÷2	10	30-120	75
TOP1040	TOP 2/10TN	1	T+N	8	5	1÷2	10	30-120	75
T0P1045	TOP 3/10T	1	T	6	4	1÷3	10	30-120	100
T0P1050	TOP 3/10TN	1	T+N	8	5	1÷3	10	30-120	100

PRE-ASSEMBLED BAR SUPPORT

Code	Reference		Туре
TOP1060	TOP 2/5TN-400	1	T+N
TOP1065	TOP 1/10TN-400	1	T+N
T0P1070	TOP 2/5TN-600	1	T+N
T0P1075	TOP 2/10TN-600	1	T+N




ACCESSORIES

TOP TI Rilsan tube for tie-rod insulation
TOP SQ-0 Bracket for horizontal busbar
TOP SQ-V Bracket for vertical busbar

Code	Reference	
TOP1055	TOP TI	100
T0P1100	TOP SQ-0	10
T0P1105	TOP SQ-V	10

TOP1105 TOP SQ-V

Ω TOP - Universal bar support (tables of distances)

Distance between support depending on lcc (short-circuit current)

Icc pk = Short-circuit current peak value of short duration, equal to 200 mseconds, expressed in kAmperes **Icc rms** = Effective value of short-circuit current, duration equal to 1 second, expressed in kAmperes

INFORMATION FOR ASSEMBLY

- The first and last bar support must be assembled at a distance from the bar extremities not exceeding 1/4 of the distance requested between both supports.
- In some minimum phase spacing configurations, it might be difficult for the internal phases to insert the screws; one should do one phase at a time.
- In minimum phase spacing configurations, one should use the TOP1055 RILSAN tube to insulate the tie-rod.
- In horizontal configurations starting from copper 80x10 bar nr. 2 or 50x10 bar nr. 3 per phase, one should use the DOUBLE aluminum channel (i.e. two coupled channels, one inside the other, to create a kind of square pipe with significant mechanical rigidity (cf. picture on page 21).

Ω TOP 3 / 10 >> 3 BARS PER PHASE

Minimum spacing between phases: 100 mm

l	cc kA pk		5	3			7	4			1	10			14	13			16	35			18	37			22	20	
lcc	kA eff. 1s		2	5			3	5			5	0			6	5			7	5			8	5			10	00	
	ing between nases mm	100	125	150	175	100	125	150	175	100	125	150	175	100	125	150	175	100	125	150	175	100	125	150	175	100	125	150	175
Z	30x10	670	700	710	710	490	505	505	505	330	335	340	340	250	260	260	260	220	225	225	225	190	200	200	200	165	170	170	170
읅	40x10	810	840	860	860	580	610	615	615	385	410	410	410	300	310	315	315	260	270	275	275	230	240	240	240	175	205	205	205
띯	50x10	930	975	1000	1000	585	700	715	715	450	465	470	480	345	360	370	370	300	315	320	320	245	275	280	280	180	215	240	240
SS	60x10	1050	1150	1200	1200	780	810	840	850	500	510	520	535	400	420	435	440	325	365	375	380	255	315	330	335	180	225	270	280
8	80x10	1300	1200	1200	1200	900	950	975	1000	500	510	525	535	410	470	495	500	335	385	430	455	260	320	360	400	190	230	270	315
80	100x10	1300	1400	1400	1400	1200	1200	1200	1200	505	515	525	535	420	480	495	500	350	395	440	480	275	330	375	410	200	240	280	325
BA	120x10	1300	1400	1400	1400	1200	1200	1200	1200	505	515	525	535	435	485	495	500	360	405	445	480	285	340	380	415	200	240	280	325

Ω TOP 2 / 10 >> 2 BARS PER PHASE

Minimum spacing between phases: 75 mm

lc	c kA pk		5	3			7	4			11	10			- 14	43			1	65			18	37	
lcc	kA eff.1s		2	5			3	5			5	0			6	5			7	5			8	5	
	ng between ases mm	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150
8	30x10	530	570	590	590	380	400	425	425	255	275	280	285	190	215	220	220	170	180	190	190	130	155	160	165
등	40x10	620	680	710	720	460	480	500	510	310	330	340	350	220	250	260	270	170	210	225	225	130	170	200	205
S	50x10	740	790	820	840	510	525	540	570	350	380	390	410	235	290	305	315	175	220	265	270	135	175	215	240
SS	60x10	860	920	960	1000	510	530	545	630	385	440	460	480	245	310	350	370	180	235	275	300	140	180	220	260
8	80x10	1020	1050	1100	1200	510	530	545	630	395	450	495	495	255	325	375	420	190	240	285	315	150	190	230	270
~	100x10	1230	1300	1350	1400	520	535	555	640	410	470	495	505	275	335	385	425	205	250	305	350	160	200	230	280
BA	120x10	1230	1300	1350	1400	520	535	560	650	435	490	495	505	285	345	390	435	215	265	315	360	160	205	235	280

Ω TOP 1 / 10 >> 1 BAR PER PHASE Minimum spacing between phases: 50 mm

												•					
lco	kA pk		5	3			7	4			11	10			14	43	
lcc l	kA eff.1s		2	5			3	5			5	0			6	5	
	ng between ases mm	50	75	100	125	50	75	100	125	50	75	100	125	50	75	100	125
Z	30x10	455	550	560	720	325	400	460	520	220	265	310	350	170	205	240	260
SECTION	40x10	530	650	750	835	380	460	530	600	255	310	360	400	195	240	275	310
S	50x10	545	720	830	935	425	520	560	670	285	350	400	450	195	265	310	345
SS	60x10	545	810	940	1050	480	525	560	750	320	390	450	505	195	295	345	390
8	80x10	545	915	1055	1210	500	525	560	850	335	440	495	505	195	295	360	410
BAR CROSS	100x10	545	1025	1200	1410	500	525	560	955	335	440	495	505	200	275	375	425
BA	120x10	545	1135	1370	1605	500	525	560	1030	335	440	495	505	200	275	375	425

NB. The distances between supports (in mm) are computed considering the yield stress of copper; the indicated values therefore prevent permanent deformation of the copper bars when stressed by short-circuit conditions.

Ω TOP - Universal bar support (tables of distances)

Distance between support depending on lcc (short-circuit current)

Icc pk = Short-circuit current peak value of short duration, equal to 200 mseconds, expressed in kAmpere **Icc rms =** Effective value of short-circuit current, duration equal to 1 second, expressed in kAmpere

Ω TOP 4 / 5 >> 4 BARS PER PHASE

Minimum spacing between phases: 75 mm

lco	c kA pk		5	3			7	4			1	10			- 1	43			10	35	
Icc I	kA eff.1s		2	5			3	5			5	0			6	5			7	5	
	ng between ases mm	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150
Z	30x5	330	330	330	330	235	235	235	235	155	160	160	160	120	120	120	120	105	105	105	105
SECTION	40x5	400	410	410	410	285	295	295	295	190	195	195	195	145	150	150	150	125	130	130	130
8	50x5	465	485	485	485	330	350	350	350	220	235	235	235	170	180	180	180	145	155	155	155
SS	63x5	545	575	585	585	370	390	420	420	260	275	280	280	200	210	215	215	165	185	185	185
CROSS	80x5	650	685	710	710	375	405	470	510	310	330	340	340	230	250	260	260	170	215	225	225
B C	100x5	770	820	860	890	380	415	600	615	345	350	360	365	245	280	310	315	180	230	260	275
BAR	125x5	960	1030	1080	1120	380	445	710	730	345	355	360	365	255	290	320	340	200	235	270	295

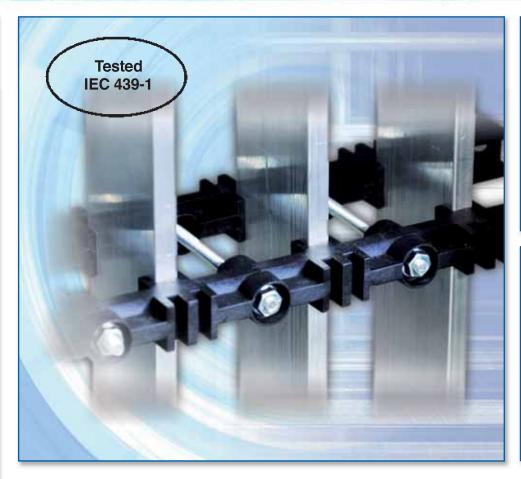
Ω TOP 4 / 5 >> 3 BARS PER PHASE

Minimum spacing between phases: 75 mm

lco	c kA pk		5	3			7	4			- 1	10			14	43			16	35	
lcc l	kA eff.1s		2	5			3	5			5	0			6	5			7	5	
	ng between ases mm	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150	75	100	125	150
Z	30x5	285	285	285	285	200	200	200	200	135	135	135	135	105	105	105	105			-	-
SECTION	40x5	345	355	355	355	245	255	255	255	165	170	170	170	125	130	130	130	110	110	110	110
SS	50x5	405	425	425	425	290	300	300	300	195	200	200	200	150	155	155	155	130	135	135	135
SS	63x5	475	500	510	510	340	360	365	365	230	240	245	245	175	185	190	190	150	160	165	165
CROSS	80x5	570	600	620	620	375	405	445	450	275	285	295	300	210	220	230	230	175	190	195	200
B C	100x5	675	710	735	755	380	415	525	540	325	340	355	365	245	260	270	280	185	225	235	240
BAR	125x5	815	860	910	945	380	445	625	645	345	355	360	365	255	290	320	330	195	235	265	285

Ω TOP 2 / 5 >> 2 BARS PER PHASE Minimum spacing between phases: 50 mm

	kA pk		5	<u> </u>				4				10				43	
Icc I	kA eff.1s		2	5			3	5			5	0			6	5	
	ng between ases mm	50	75	100	125	50	75	100	125	50	75	100	125	50	75	100	125
Z	30x5	220	240	245	245	160	170	175	175	105	115	115	115		-		-
SECTION	40x5	270	295	310	310	195	210	220	220	130	140	145	150	100	100	100	100
SE	50x5	320	345	365	375	230	250	260	270	150	165	175	180	115	125	135	135
SS	63x5	375	410	430	450	270	295	310	325	180	195	205	215	140	150	160	165
CROSS	80x5	455	490	515	540	325	350	370	385	215	235	250	260	165	180	190	200
B C	100x5	540	580	610	640	380	420	440	460	260	280	295	305	200	215	225	235
BAR	125x5	645	690	730	760	400	450	500	540	310	330	350	365	240	255	270	280


Ω TOP 2 / 5 >> 1 BAR PER PHASE Minimum spacing between phases: 50 mm

lco	kA pk		5	3			7	4			1	10			14	43	
Icc	kA eff.1s		2	5			3	5			5	0			6	5	
	ng between ases mm	50	75	100	125	50	75	100	125	50	75	100	125	50	75	100	125
Z	30x5	225	280	320	360	160	200	230	260	110	135	155	175	-	-	-	
SECTION	40x5	265	325	375	415	190	230	265	300	125	155	180	200	-	-	-	-
SS	50x5	295	360	415	465	210	260	300	335	140	175	200	225	110	130	155	170
	63x5	330	405	470	525	235	290	335	375	160	195	225	250	120	150	170	195
2	80x5	375	455	530	590	265	325	380	425	180	220	255	285	135	170	195	220
BAR CROSS	100x5	415	510	590	660	300	365	425	475	200	245	285	315	155	190	220	245
BA	125x5	465	570	660	740	335	385	475	530	225	285	315	355	170	210	245	275

NB. The distances between supports (in mm) are computed considering the yield stress of copper; the indicated values therefore prevent permanent deformation of the copper bars when stressed by short-circuit conditions.

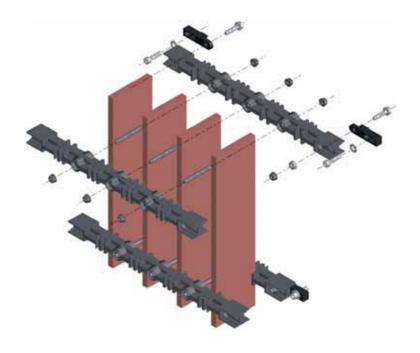
- * For short-circuit resistance values other than or intermediate to the indicated ones.
- ** For configurations other than the indicated ones.
- ** For spaces between phases intermediate or higher than the indicated ones.

PLEASE, CONTACT OUT TECHNICAL OFFICE

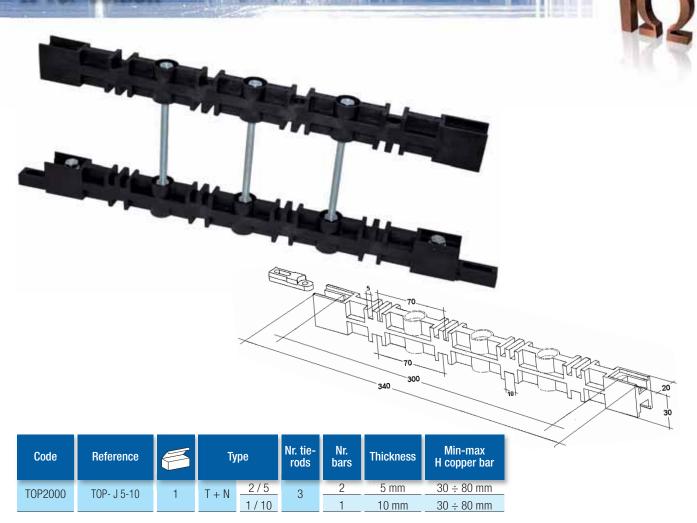
Ω TOP JUNIOR - Compact bar support

TECHNICAL FEATURES

High versatility
Space between phases 70 mm
High resistance to short-circuit
Ampacity from 400 to 1600 Amp
Single reference for use with 5- to 10-mm thick bars
Fitting directly on 400-mm deep panel boards
Adjustable fasteners supplied


Certifications:

Compliant with standard IEC 439-1 Ω TOP JUNIOR was tested in laboratory CERTIFIED ACAE-LOVAG as per standard IEC 439-1



Made of:

6/6 Polyamide reinforced with 30% fiberglass Self-extinguishing UL 94V0 Colored black

Space for fastening screws:

Without fastenerminimum 300 mmmaximum 330 mmWith fastenerminimum 350 mmmaximum 410 mm

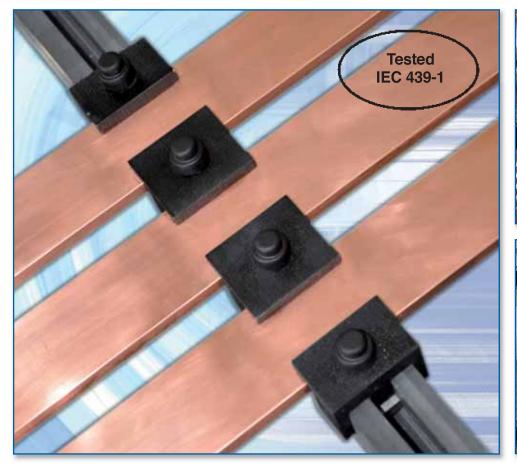
Distance between support depending on Icc (short-circuit current)

Icc pk = Short-circuit current peak value of short duration, equal to 200 mseconds, expressed in kAmperes **Icc rms** = Efficient value of short-circuit current, duration equal to 1 second, expressed in kAmperes

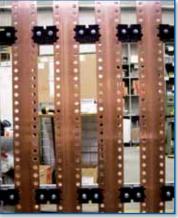
Ω TOP JUNIOR (table of distances)

Ω TOP JUNIOR 1 / 10 >> 1 BAR PER PHASE

	lcc kA pk cc kA eff. 1s	53 25	74 35	110 50	132 60
	acing between phases mm			70	
N.	30x10	530	380	280	190
	40x10	530	440	280	190
SS S	50x10	530	490	285	195
BAR CROSS SECTION	60x10	530	490	285	195
BAF	80x10	530	490	285	200


Ω TOP JUNIOR 2 / 5 >> 2 BARS PER PHASE

	lcc kA pk lcc kA eff.1s	53 25	74 35	110 50	132 60
	acing between phases mm			70	
NO	30x5	235	170	115	
	40x5	290	205	140	115
388	50x5	340	245	165	135
BAR CROSS SECTION	60x5	390	280	185	150
BA	80x5	455	345	230	200

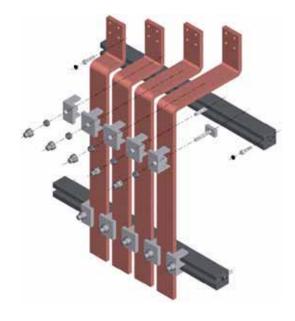

Ω TOP JUNIOR 2 / 5 >> 1 BAR PER PHASE

	lcc kA pk lcc kA eff.1s acing between	53 25	74 35	110 50	132 60
Op.	phases mm			70	
8	30x5	270	190	130	105
BAR CROSS SECTION	40x5	310	220	150	125
SS S	50x5	350	250	165	140
88	60x5	380	275	180	150
BA	80x5	390	310	210	170

Ω FLAT bar support

TECHNICAL FEATURES

Universal


Distance between adjustable phases Blocks complete with fitting screws Support channel made of PVC Bar thickness from 4 to 14 mm Ampacity from 250 to 1,600 Amp High resistance to short-circuits

Certifications:

Compliant with standard IEC 439-1 Ω Flat was tested in laboratory CERTIFIED ACAE-LOVAG as per standard IEC 439-1

Minimum air distance between two phases 20 mm with "T blocks" Minimum air distance between two phases 40 mm $\,$ with "L blocks"

It is mainly made of two elements:

- 1) supporting and fastening channel in extruded PVC
- 2) set of blocks and screws to tighten the bar.

The Ω FLAT bar support can also be used as an anchoring system for flexible insulated bars (cf. page 8).

SUPPORT CHANNEL AND FASTENING SCREWS

- One single code for all configurations
- Made in extruded PVC
- Black color
- Self-extinguishing UL94V0
- 2 meter long
- Working temperature up to 65°C
- M6x25 six lobes screw to fasten the channel to the panel board, to be used after punching the bottom guiding rail of the channel

Code Reference Description	
FLT1000 FLT-PR2000 PVC channel 2 meters long	2

INSULATING BLOCKS AND SCREWS

In 6/6 polyamide reinforced with 30% fiberglass Black color

Self-extinguishing UL 94V0

- insulating "L" block (for adjustable space between phases)
- insulating "T" block (for minimum space between bars = 20 mm)

Complete with fastening screws and insulating nut cap

- Hammer head screw to insert in channel to fasten block
- hexagonal nut to tighten block
- insulating nut cap
- M6x25 hexagonal screw to fasten channel
- plastic cap to insulate the head screw

Code	Reference	Description		Bar thickness in mm			width mm
FLT1005	FLT-BL-L	Kit of 6 "L" blocks in 6/6 PA complete with screws	1	min 4	may 1/	min 20	max 100
FLT1010	FLT-BL-T	Kit of 6 "T" blocks in 6/6 PA complete with screws	1	111111 4	111dX 14	111111 20	

Example:

to make a 3-pole + neutral bar support at MINIMUM distance between phases

Use: n° 1 PVC channel 2 m long to be cut at lenght requested

n° 3 "T" blocks with screws for intermediate fastening between bars of different phases

n° 2 "L" blocks with screws for terminal fastening of the two farthest bars

Select: PVC channels 2 m long FLT1000

n° 1 kit of "L" blocks complete with screws
n° 1 kit of "T" blocks complete with screws
FLT1005
FLT1010

Ω FLAT bar support (table of distances)

Distance between support depending on Icc (short-circuit current)

Icc pk = Short-circuit current peak value of short duration, equal to 200 mseconds, expressed in kAmperes

Icc rms = Efficient value of short-circuit current, duration equal to 1 second, expressed in kAmperes

	lcc kA pk			5	3			7	4			8	4			1	10	
	lcc kA eff.1s		25			35			40					50				
	30x5	Space between phases in mm	50	70	80	90	50	70	80	90	50	70	80	90	50	70	80	90
	OOAO	Distance between bar supports in mm	240	330	390	440	120	170	195	220	-	130	150	170	-	-	-	100
S	40x5	Space between phases in mm	60	80	90	100	60	80	90	100	60	80	90	100	60	80	90	100
SECTION	70/0	Distance between bar supports in mm	290	380	425	480	150	190	200	225	115	150	160	180	-	-	100	110
120	50x5	Space between phases in mm	70	90	100	110	70	90	100	110	70	90	100	110	70	90	100	110
	OUNU	Distance between bar supports in mm	335	430	475	525	170	220	240	265	130	170	190	210	100	105	110	120
CROSS	60x5	Space between phases in mm	80	100	110	120	80	100	110	120	80	100	110	120	80	100	110	120
Ž,	OONO	Distance between bar supports in mm	380	480	530	575	190	245	270	290	150	190	210	230	105	115	120	130
	80x5	Space between phases in mm	100	120	130	140	100	120	130	140	100	120	130	140	100	120	130	140
BAR	OOAO	Distance between bar supports in mm	480	570	625	675	240	295	320	345	190	230	250	265	110	130	145	155
	100x5	Space between phases in mm	120	140	150	160	120	140	150	160	120	140	150	160	120	140	150	160
	10000	Distance between bar supports in mm	590	680	730	780	290	340	370	390	230	265	285	305	130	150	160	185

	lcc kA pk			53				74				8	4			11	10	
		Icc kA eff.1s	25			35			40				50					
	30x10	Space between phases in mm	50	70	80	90	50	70	80	90	50	70	80	90	50	70	80	90
	OUNTO	Distance between bar supports in mm	240	330	390	440	120	170	195	220	-	130	150	170	-	-	-	100
CTION	40x10	Space between phases in mm	60	80	90	100	60	80	90	100	60	80	90	100	60	80	90	100
Ĕ	TUNTU	Distance between bar supports in mm	290	380	425	480	150	190	200	225	115	150	160	180	-	-	100	110
SEC	50x10	Space between phases in mm	70	90	100	110	70	90	100	110	70	90	100	110	70	90	100	110
S	JUNIO	Distance between bar supports in mm	335	430	475	525	170	220	240	265	130	170	190	210	100	105	110	120
CROS	60x10	Space between phases in mm	80	100	110	120	80	100	110	120	80	100	110	120	80	100	110	120
ĕ	OUNTO	Distance between bar supports in mm	380	480	530	575	190	245	270	290	150	190	210	225	100	110	115	130
	80x10	Space between phases in mm	100	120	130	140	100	120	130	140	100	120	130	140	100	120	130	140
BA	80x10 -	Distance between bar supports in mm	480	570	625	675	240	290	320	345	190	230	250	265	110	130	145	155
	100x10	Space between phases in mm	120	140	150	160	120	140	150	160	120	140	150	160	120	140	150	160
	100/10	Distance between bar supports in mm	590	680	730	780	290	340	370	390	230	265	285	305	130	150	160	185

NOTE:

The first space between phases value refers to the use of the "T" block (air distance between two adjacent bars, equal to 20 mm).


The second space between phases value refers to the use back to back "L" blocks (air distance between two adjacent bars, equal to 40 mm).

Further values refer to the use of the "L" blocks only (2 per bar) spaced between each other.

For other distance between phase values, contact our technical office.

- values lower than 100 mm.

3-4-pole repartition support

TECHNICAL FEATURES

6/6 polyamide reinforced with 30% fiberglass

Self-extinguishing UL94V0

Working temperature: -40°C +130°C Continuous working temperature: +110°C

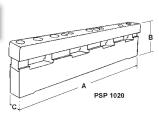
Softening temperature: +215°C

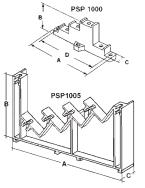
Glow wire test: 960°C

Black color

M6 screws for bar fastening — Protection screen fastening kit

Direct fastening kit on DIN rail


included for PSP1005


included for PSP1000 and PSP1005

Protection caps for PSP1010 and 1020

PSP1015 and 1025 codes

Code	Reference		A mm	B mm	C mm	D mm	Space between phases
PSP1000	PSP250	8	150	54	16	130	42 mm
PSP1005	PSP400/630	2	216	117	34	-	65 mm
PSP1010	PSP 630T	1	180	55	16	-	60 mm
PSP1020	PSP 630TN	1	240	55	16	-	60 mm
PSP1015	PS PRO 630T	1	185	32	23	-	-
PSP1025	PS PRO 630TN	1	245	32	23	-	-

Distance between support depending on lcc (short-circuit current)

Icc pk = Short-circuit current peak value of short duration, equal to 200 mseconds, expressed in kAmperes **Icc rms** = Efficient value of short-circuit current, duration equal to 1 second, expressed in kAmperes

Code	Bar cross-	lcc pk (kA) lcc rms (kA)	11 7	14 8	24 12	32 15	48 23
	section	in Amp		Dista	nce ir	ı mm	
PSP1000	15x5	150A	561	455	258	150	-
F3F1000	20x5	250A	647	526	266	150	-
	15x5	150A	682	554	314	250	100
	20x5	250A	788	640	363	261	100
PSP1005	32x5	400A	980	809	410	261	100
	20x10	500A	980	980	410	261	100
	30x10	630A	980	980	410	261	100

			lcc pk (kA)	30,5	34,0	42,6	48,9	54,6	59,6	75,6
	Code	Bar cross- section	lcc rms (kA)	15,5	17,1	21,6	24,6	26,3	29,1	36,8
		26011011	in Amp			Dista	nce i	n mm		
		20x5	250A	600		400		200		
	PSP1015	20x10	500A		600		400		200	
	PSP1020	30x5	400A			600			400	200
		30x10	630A			600			400	200
_										

Repartition support in KIT include all that is needed to make the distribution unit. The KIT is made of:

- copper bars (cross-section, length and nr. of holes as per hereunder table)
- distribution unit supports (cf. range page 29)
- support spacers for the protection screen
- protection screen cut, bent and punched in the suitable dimensions

Code	Reference		in Amp	lcc pk in kA	Bar cross- section		h Length H nensions in		Numb Inputs	er of outputs	Type of support	Nr. supports	
PSP1030	PSP160K-23	1	160	15	15 x 5	20	230	78	1 x Ø 8,5	6 x M6	PSP1000	2	
PSP1035	PSP250K-23	1	250	15	20 x 5	20	230	78	1 x Ø 8,5	6 x M6	PSP1000	2	
PSP1036	PSP250K-43	1	250	10	20 x 5	20	430	78	1 x Ø 8,5	10 x 6	PSP1000	2	
PSP1040	PSP400K-30	1	400	13	32 x 5	25	305	162	1 x Ø 10,5	8 x M6	PSP1005	2	
PSP1050	PSP400K-48	1	400	15	32 x 5	25	480	162	1 x Ø 10,5	14 x M6	PSP1005	3	
PSP1055	PSP630K-25	1	630	36	30 x 10	25	266	60	1 x Ø 10,5	8 x M8	PSP1020	2	
PSP1060	PSP630K-40	1	630	29	30 x 10	25	441	60	1 x Ø 10,5	15 x M8	PSP1020	2	

The power inputs of distribution units in KIT can be indifferently placed right or left.

IMPORTANT:

TEKNOMEGA will make upon request distribution KITS as per your specific application requirements.

Protection screens and spacers

COLD BENDABLE PROTECTION SCREEN

Made in PETG (terephtalate polyethylen), 3-mm thick

Code	Reference		Weight Kg.	H mm	L mm	S mm
SCH1000	SCH 1000x2000x3	1	7,00	1000	2000	3
SCH1005	SCH 1000x215x3	5	0,75	1000	215	3
SCH1010	SCH 1000x150x3	5	0,53	1000	150	3

PLASTIC SPACER SUPPORT FOR PROTECTION SCREEN

Made of 6/6 polyamide with fiberglass, black color

Code	Reference		H mm	M mm	Ch mm
DZP2000	DZP KIT	10	70	M6	10

The KIT is made of:

4 male/male M6 threaded spacers6 4 female M6 threaded caps

